NEU GRAND LIBRARY
Opening Hours: Monday-Saturday, 08:00-20:00 | E-mail: library@neu.edu.tr
 

You are not logged in Show Basket
  Home     Advanced Search     Back  
  Brief display     MARC Display     Reserve  
Mechanism of the beneficial effect of melatonin in experimental Parkinson's disease (Yildirim, Fatos Belgin.)
Bibliographical information (record 264652)
Help
Mechanism of the beneficial effect of melatonin in experimental Parkinson's disease
Author:
Yildirim, Fatos Belgin. Search Author in Amazon Books

Edition:
2014.
Classification:
WL 140
URL:

http://library.neu.edu.tr:2048/login?url=http://dx.doi.org/10.1016/j.neuint.2014.09.005
Detailed notes
    - This study aimed to elucidate locomotor activity changes in 6-hydroxydopamine (6-OHDA) induced Parkinson's disease (PD) and investigate the possible beneficial effects of melatonin on altered levels of locomotor activity, cyclooxygenase (COX), prostaglandin E2 (PGE2), nuclear factor kappa-B (NF-kappa B), nitrate/nitrite and apoptosis. Male Wistar rats were divided into five groups: vehicle (V), melatonin-treated (M), 6-OHDA-injected (6-OHDA), 6-OHDA-injected + melatonin-treated (6-OHDA-Mel) and melatonin treated + 6-OHDA-injected (Mel-6-OHDA). Melatonin was administered intraperitoneally at a dose of 10 mg/kg/day for 30 days in M and Mel-6-OHDA groups, for 7 days in 6-OHDA-Mel group. Experimental PD was created stereotactically via unilateral infusion of 6-OHDA into the medial forebrain bundle (MFB). The 6-OHDA-Mel group started receiving melatonin when experimental PD was created and treatment was continued for 7 days (post-treatment). In the Mel-6-OHDA group, experimental PD was created on the 23rd day of melatonin treatment and continued for the remaining 7 days (pre- and post-treatment). Locomotor activity performance decreased in 6-OHDA group compared with vehicle; however melatonin treatment did not improve this impairment. Nuclear factor kappa Bp65 and Bcl-2 levels were significantly decreased while COX, PGE2 and caspase-3 activity were significantly increased in 6-OHDA group. Melatonin treatment significantly decreased COX, PGE2 and caspase-3 activity, increased Bcl-2 and had no effect on NE-kappa B levels in experimental PD. 6-Hydroxydopamine injection caused an obvious reduction in TH positive dopaminergic neuron viability as determined by immunohistochemistry. Melatonin supplementation decreased dopaminergic neuron death in 6-OHDA-Mel and Mel-6-OHDA groups compared with 6-OHDA group. Melatonin also protected against 6-OHDA-induced apoptosis, as identified by increment in Bcl-2 levels in dopaminergic neurons. The protective effect of melatonin was more prominent for most parameter following 30 days treatment (pre- and post-) than 7 days post-treatment. In summary, melatonin treatment decreased dopaminergic neuron death in experimental PD model by increasing Bcl-2 protein level and decreasing caspase-3 activity. (C) 2014 Elsevier Ltd. All rights reserved.
Related links
Items (1)
Barcode
Status
Library
Section
EOL-158
Item available
NEU Grand LibraryOnline (WL 140 .M43 2014)
Online electronic

NEAR EAST UNIVERSITY GRAND LIBRARY +90 (392) 223 64 64 Ext:5536. Near East Boulevard, Nicosia, TRNC
This software is developed by NEU Library and it is based on Koha OSS
conforms to MARC21 library data transfer rules.